
USER:

System Prompt:

You are an expert in the domain of optimization heuristics. Your task is to design
heuristics that can effectively solve optimization problems.

Your response outputs Python code and nothing else. Format your code as a Python
code string: "```python ... ```".

User Prompt:

Write a crossover function for a crossover function to solving the port selection
optimization problem using a genetic algorithm. The problem requires selecting a
subset of ports from a given set of ports to serve users, with the goal of minimizing
the transmission power. The encoding uses binary encoding, where the number of
binary bits equals the number of ports, and a bit value of 1 represents the selection of
that port.The solution generated after the crossover must be valid.

The `crossover` function takes as input a 2D NumPy array parents and an integer
n_pop. The function performs a genetic crossover operation on parents to generate
n_pop offspring. Use vectorized implementation if possible.

def crossover_v1(parents: np.ndarray, n_pop: int) -> np.ndarray:

 n_parents, n_decap = parents.shape

 # Split genomes into two halves

 left_halves = parents[:, :n_decap // 2]

 right_halves = parents[:, n_decap // 2:]

 # Create parent pairs

 parents_idx = np.stack([np.random.choice(range(n_parents), 2, replace=False)
for _ in range(n_pop)])

 parents_left = left_halves[parents_idx[:, 0]]

 parents_right = right_halves[parents_idx[:, 1]]

 # Create offspring

 offspring = np.concatenate([parents_left, parents_right], axis=1)

 return offspring

Refer to the format of a trivial design above. Be very creative and give
`crossover_v2`. Output code only and enclose your code with Python code block:
```python ... ``` 

 

LLM Response: 

```python 

import numpy as np

def crossover_v2(parents: np.ndarray, n_pop: int) -> np.ndarray:

 n_parents, n_decap = parents.shape

 # Random parent pair indices for each offspring

 parent_pairs = np.random.randint(0, n_parents, size=(n_pop, 2))

 # Create mask with 50% chance for each parent's gene

 mask = np.random.random(size=(n_pop, n_decap)) < 0.5

 # Vectorized selection using mask

 offspring = np.where(mask, parents[parent_pairs[:, 0]], parents[parent_pairs[:,
1]])

 return offspring

``` 

 

The comment: Since the API is accessed by multiple processes, only the output 
returned by the LLM in one of the processes is shown here. 
 

USER: 

System Prompt:  

You are an expert in the domain of optimization heuristics. Your task is to give hints 
to design better heuristics. 

 



User Prompt:  

Below are two crossover functions for Write a crossover function for solving the port 
selection optimization problem using a genetic algorithm. The problem requires 
selecting a subset of ports from a given set of ports to serve users, with the goal of 
minimizing the transmission power. The encoding uses binary encoding, where the 
number of binary bits equals the number of ports, and a bit value of 1 represents the 
selection of that port.The solution generated after the crossover must be valid. 

The `crossover` function takes as input a 2D NumPy array parents and an integer 
n_pop. The function performs a genetic crossover operation on parents to generate 
n_pop offspring. Use vectorized implementation if possible. 

You are provided with two code versions below, where the second version performs 
better than the first one. 

[Worse code] 

    n_parents, n_decap = parents.shape 

    # Create parent pairs with distinct indices using vectorized approach 

    first_parent = np.random.randint(0, n_parents, n_pop) 

    second_parent = (first_parent + np.random.randint(1, n_parents, n_pop)) % 
n_parents 

    parent_pairs = np.column_stack((first_parent, second_parent)) 

    # Extract parent genomes using advanced indexing 

    parents_a = parents[parent_pairs[:, 0]] 

    parents_b = parents[parent_pairs[:, 1]] 

    # Create random crossover mask with probability weights 

    crossover_probs = np.random.uniform(0.4, 0.6, (n_pop, n_decap))  # Biased 
uniform crossover 

    mask = np.random.rand(n_pop, n_decap) < crossover_probs 

    # Perform element-wise crossover using the probabilistic mask 

    offspring = np.where(mask, parents_a, parents_b) 

    # Ensure at least one port is selected (problem-specific validity) 

    all_zero = (offspring.sum(axis=1) == 0) 



    offspring[all_zero] = parents[np.random.choice(n_parents, np.sum(all_zero))] 

    return offspring 

[Better code] 

    n_parents, n_decap = parents.shape 

    # Random parent pair indices for each offspring 

    parent_pairs = np.random.randint(0, n_parents, size=(n_pop, 2)) 

    # Create mask with 50% chance for each parent's gene 

    mask = np.random.random(size=(n_pop, n_decap)) < 0.5 

    # Vectorized selection using mask 

    offspring = np.where(mask, parents[parent_pairs[:, 0]], parents[parent_pairs[:, 
1]]) 

    return offspring 

You respond with some hints for designing better heuristics, based on the two code 
versions and using less than 20 words. 

 

The comment: [Better code] and [Worse code] are both results returned by the LLM 
during the initialization phase. 

 

LLM Response： 

Uniform crossover (50% per gene) and unrestricted parent selection enhance 
diversity and efficiency. 

 

The comment: Since the API is accessed by multiple processes, only the output 
returned by the LLM in one of the processes is shown here. 

 

USER: 

System Prompt:  



You are an expert in the domain of optimization heuristics. Your task is to design 
heuristics that can effectively solve optimization problems. 

Your response outputs Python code and nothing else. Format your code as a Python 
code string: "```python ... ```". 

 

User Prompt:  

Write a crossover function for Write a crossover function for solving the port selection 
optimization problem using a genetic algorithm. The problem requires selecting a 
subset of ports from a given set of ports to serve users, with the goal of minimizing 
the transmission power. The encoding uses binary encoding, where the number of 
binary bits equals the number of ports, and a bit value of 1 represents the selection of 
that port.The solution generated after the crossover must be valid. 

The `crossover` function takes as input a 2D NumPy array parents and an integer 
n_pop. The function performs a genetic crossover operation on parents to generate 
n_pop offspring. Use vectorized implementation if possible. 

 

 

[Worse code] 

def crossover_v0(parents: np.ndarray, n_pop: int) -> np.ndarray: 

 

    n_parents, n_decap = parents.shape 

    # Create parent pairs with distinct indices using vectorized approach 

    first_parent = np.random.randint(0, n_parents, n_pop) 

    second_parent = (first_parent + np.random.randint(1, n_parents, n_pop)) % 
n_parents 

    parent_pairs = np.column_stack((first_parent, second_parent)) 

     

    # Extract parent genomes using advanced indexing 

    parents_a = parents[parent_pairs[:, 0]] 

    parents_b = parents[parent_pairs[:, 1]] 



     

    # Create random crossover mask with probability weights 

    crossover_probs = np.random.uniform(0.4, 0.6, (n_pop, n_decap))  # Biased 
uniform crossover 

    mask = np.random.rand(n_pop, n_decap) < crossover_probs 

     

    # Perform element-wise crossover using the probabilistic mask 

    offspring = np.where(mask, parents_a, parents_b) 

     

    # Ensure at least one port is selected (problem-specific validity) 

    all_zero = (offspring.sum(axis=1) == 0) 

    offspring[all_zero] = parents[np.random.choice(n_parents, np.sum(all_zero))] 

     

    return offspring 

 

[Better code] 

def crossover_v1(parents: np.ndarray, n_pop: int) -> np.ndarray: 

 

    n_parents, n_decap = parents.shape 

    # Random parent pair indices for each offspring 

    parent_pairs = np.random.randint(0, n_parents, size=(n_pop, 2)) 

    # Create mask with 50% chance for each parent's gene 

    mask = np.random.random(size=(n_pop, n_decap)) < 0.5 

    # Vectorized selection using mask 

    offspring = np.where(mask, parents[parent_pairs[:, 0]], parents[parent_pairs[:, 
1]]) 

    return offspring 



 

[Reflection] 

Uniform crossover (50% per gene) and unrestricted parent selection enhance 
diversity and efficiency. 

 

[Improved code] 

Please write an improved function `crossover_v2`, according to the reflection. Output 
code only and enclose your code with Python code block: ```python ... ```. 

 

LLM Response： 

def crossover_v1(parents: np.ndarray, n_pop: int) -> np.ndarray: 

    n_parents, n_ports = parents.shape 

    indices = np.arange(n_ports) 

    # Select distinct parent pairs using vectorized operations 

    parent_a_idx = np.random.randint(n_parents, size=n_pop) 

    parent_b_idx = np.random.randint(n_parents - 1, size=n_pop) 

    parent_b_idx += (parent_b_idx >= parent_a_idx) 

    # Gather parent chromosomes 

    parent_a = parents[parent_a_idx] 

    parent_b = parents[parent_b_idx] 

    # Generate two-point crossover masks 

    cross_points = np.random.randint(0, n_ports + 1, size=(n_pop, 2)) 

    cross_points.sort(axis=1) 

    mask = (indices >= cross_points[:, 0, None]) & (indices < cross_points[:, 1, 
None]) 

    # Combine parent genetic material 

    offspring = np.where(mask, parent_b, parent_a) 



    return offspring.astype(np.int32) 

 

USER： 

System Prompt:  

You are an expert in the domain of optimization heuristics. Your task is to give hints 
to design better heuristics. 

 

User Prompt:  

Below is your prior long-term reflection on designing heuristics for Write a crossover 
function for solving the port selection optimization problem using a genetic algorithm. 
The problem requires selecting a subset of ports from a given set of ports to serve 
users, with the goal of minimizing the transmission power. The encoding uses binary 
encoding, where the number of binary bits equals the number of ports, and a bit 
value of 1 represents the selection of that port.The solution generated after the 
crossover must be valid. 

 

Below are some newly gained insights. 

Uniform crossover (50% per gene) and unrestricted parent selection enhance 
diversity and efficiency. 

1. Ensure offspring validity via repair steps.   

2. Check and fix empty port selections post-crossover.   

3. Allow parent pairing with replacement for diversity.   

4. Use mask-based crossover with validity guarantees. 

Hints: Ensure diverse parent pairs, avoid correlated selections, and maintain genetic 
diversity. 

Hints: Prefer uniform crossover over single-point for diversity. Avoid disruptive post-
crossover mutations. Simplify gene selection logic. 

1. Prefer structured crossovers (e.g., two-point) over uniform for validity.   

2. Ensure distinct parent pairs to diversify offspring.   



3. Use vectorized masks for efficiency.   

4. Inherit validity via crossover design, not fixes. 

Handle validity via mutation, not crossover. Avoid repair bias. Use uniform crossover 
for diversity. 

Hints:   

1. Simplify crossover masks.   

2. Avoid redundant validity checks.   

3. Use uniform parent selection.   

4. Prefer full vectorization. 

Use distinct parent pairs, two-point crossover, and avoid excessive random 
swapping. 

Use structured crossover points, maintain genetic blocks, ensure parent diversity. 

1. Prefer uniform crossover over single-point for diversity   

2. Ensure validity constraints explicitly   

3. Avoid destructive random modifications   

4. Use problem-specific repair mechanisms 

Write constructive hints for designing better heuristics, based on prior reflections and 
new insights and using less than 50 words. 

 

The comment: This section contains reflective outputs from multiple LLMs.. 

 

LLM Response： 

**Hints:** Blend uniform crossover (diversity) with two-point validity checks. Use 
vectorized masks, ensure distinct parents via uniform selection. Design crossover to 
inherit valid gene blocks, avoiding empty solutions without repair. Prioritize structured 
diversity over random swaps. 

 

USER: 



system Prompt:  

You are an expert in the domain of optimization heuristics. Your task is to design 
heuristics that can effectively solve optimization problems. 

Your response outputs Python code and nothing else. Format your code as a Python 
code string: "```python ... ```". 

 

User Prompt:  

Write a crossover function for Write a crossover function for solving the port selection 
optimization problem using a genetic algorithm. The problem requires selecting a 
subset of ports from a given set of ports to serve users, with the goal of minimizing 
the transmission power. The encoding uses binary encoding, where the number of 
binary bits equals the number of ports, and a bit value of 1 represents the selection of 
that port.The solution generated after the crossover must be valid. 

The `crossover` function takes as input a 2D NumPy array parents and an integer 
n_pop. The function performs a genetic crossover operation on parents to generate 
n_pop offspring. Use vectorized implementation if possible. 

 

[Prior reflection] 

**Hints:** Blend uniform crossover (diversity) with two-point validity checks. Use 
vectorized masks, ensure distinct parents via uniform selection. Design crossover to 
inherit valid gene blocks, avoiding empty solutions without repair. Prioritize structured 
diversity over random swaps. 

 

[Code] 

def crossover_v1(parents: np.ndarray, n_pop: int) -> np.ndarray: 

    n_parents, n_ports = parents.shape 

    indices = np.arange(n_ports) 

    # Select distinct parent pairs using vectorized operations 

    parent_a_idx = np.random.randint(n_parents, size=n_pop) 

    parent_b_idx = np.random.randint(n_parents - 1, size=n_pop) 



    parent_b_idx += (parent_b_idx >= parent_a_idx) 

    # Gather parent chromosomes 

    parent_a = parents[parent_a_idx] 

    parent_b = parents[parent_b_idx] 

    # Generate two-point crossover masks 

    cross_points = np.random.randint(0, n_ports + 1, size=(n_pop, 2)) 

    cross_points.sort(axis=1) 

    mask = (indices >= cross_points[:, 0, None]) & (indices < cross_points[:, 1, 
None]) 

    # Combine parent genetic material 

    offspring = np.where(mask, parent_b, parent_a) 

    return offspring.astype(np.int32) 

[Improved code] 

Please write a mutated function `crossover_v2`, according to the reflection. Output 
code only and enclose your code with Python code block: ```python ... ```. 

 

LLM Response: 

```python 

import numpy as np

def crossover_v2(parents: np.ndarray, n_pop: int) -> np.ndarray:

 n_parents, n_ports = parents.shape

 indices = np.arange(n_ports)

 # Select distinct parent pairs using vectorized operations

 parent_a_idx = np.random.randint(n_parents, size=n_pop)

 parent_b_idx = np.random.randint(n_parents - 1, size=n_pop)

 parent_b_idx += (parent_b_idx >= parent_a_idx)

 # Gather parent chromosomes

 parent_a = parents[parent_a_idx]

 parent_b = parents[parent_b_idx]

 # Generate two-point crossover masks with sorted points

 cross_points = np.random.randint(0, n_ports + 1, size=(n_pop, 2))

 cross_points.sort(axis=1)

 mask = (indices >= cross_points[:, 0, None]) & (indices < cross_points[:, 1,
None])

 # Combine parent genetic material

 offspring = np.where(mask, parent_b, parent_a).astype(np.int32)

 # Validity repair: Ensure at least one port is selected

 row_sums = offspring.sum(axis=1)

 invalid_mask = (row_sums == 0)

 if np.any(invalid_mask):

 invalid_indices = np.where(invalid_mask)[0]

 # Get union of parent genes for invalid offspring

 repair_candidates = parent_a[invalid_indices] | parent_b[invalid_indices]

 # Vectorized repair using argmax on random mask

 rand_mask = np.random.rand(len(invalid_indices), n_ports)

 rand_mask = rand_mask * repair_candidates # zero out invalid positions

 repair_choices = rand_mask.argmax(axis=1)

 # Apply repairs using advanced indexing

 offspring[invalid_indices, repair_choices] = 1

 return offspring

``` 


